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Overview

• Computer Vision = Inverse Computer Graphics
• Bayesian Approach

– General Solution to Inverse Problems
– Hence Bayesian Computer Vision

• Theory
– Light Scattering Model
– Super-resolution

• Simplified Problem - 2D
• Initial 3D Problem
• Extended 3D Problem
• Summary



3D Surface Reconstruction - Aims

• Build a high-resolution surface model that 
represents both the geometry and the reflectance 
properties of the surface using whatever image 
data is available.

– Useful for both science and navigation
– integrate orbiter, lander/descent imagery and rover 

imagery
– integrate new images into the existing model
– integrate non-visual data (eg laser altimetery)



Computer vision = inverse graphics

• Graphics
• surface is known (to 

sufficient resolution)
• lighting known
• surface scattering 

properties known
• camera parameters 

(position, fov, psf etc) 
known

• => compute expected
images (pixels)3D Surface model

Image



Computer vision = inverse graphics

• Inverse Graphics
• surface unknown
• lighting unknown
• surface scattering 
properties unknown (but 
scattering model known)
• camera parameters 
unknown

• Given a set of images
• find the most likely 
surface (and most likely 
values of other 
parameters)

Images

3D Surface model



Bayesian Solution to Inverse Problems

• parameters are 
– camera position and orientation, psf, field of view
– lighting direction, strength

– Initially parameters are assumed known.  Will treat the 
unknown case later.

p(3d surface | pixels,parameters) ∝
p(pixels | surface, parameters) × p(surface | parameters)

likelihood × prior



Likelihood

• Likelihood is

– this is the graphics problem

– (independent gaussian model)

p(pixels |  3D surface,  parameters)

Likelihood =  1
2πσ p

p
∏ Exp[− 1

2 ( Ip − ˆ I p
σ p

2 )2 ]

ˆ I p = expected intensity of given pixel p

σ p = standard deviation of actual pixel intensity Ip  relative to ˆ I p



Putting the components together

• Prior
– use a smoothness prior

• Posterior

– surface that maximizes the posterior = “regularized” least-
squares estimate

p(h) ∝ exp(−hΣ−1h T / 2)

−2 log P(surface | pixels,  parameters) ∝
1

σ p
2 (Ip − ˆ I p )2 + hΣ−1

p
� h



3D Surface Model

• Triangulated surface
– height field (hi)
– regular grid (with local subdivision)
– surface properties (eg albedo) associated with each triangle

• Advantages
– guarantees surface continuity
– compatible with existing graphics packages

• Alternatives
– smoothly interpolated surface (splines)



Image Formation

surface
patch
∆x

pixel
∆p

psf

ˆ I p −  many to one mapping

−  super - resolution,  

∆x < ∆p

ˆ I p = ˆ I p(lighting,

camera parameters

surface properties)



Comparison to standard rendering

• standard rendering
– projected triangle >> 

pixel

• object-space rendering
– projected triangle < pixel
– needed for super-

resolved inference



Why super-res works

• Beating the Nyquist Limit
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Surface Inference as Bayesian Inference

surface “camera” synthetic 
image

real image

--

model measuring system synthetic
measurements

real measurements



Bayesian Estimation of Surface Model Parameters

• Optimization

– In the log-posterior, L(h,ρ) we linearize about the 

current estimate (h0, ρ0) giving

– Where

– And the log-posterior is replaced by the quadratic form

ˆ I (h,ρ)
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Error surfaces – heights and albedos



Inferred surface



Real Input Images



Reprojected Surfaces



Summary

– Computer vision (3D surface reconstruction from multiple 
images) can be treated as inverse graphics

– Bayesian inference generally solves inverse problems, and 
can be applied to inverse graphics

– Reconstructed surface (and camera/lighting parameters) 
becomes a problem of “smoothed” parameter estimation 
(map estimation)

– Standard optimization procedures provide a practical 
solution to surface reconstruction

– Reconstruction can be at higher resolution than the images 
(super-resolution)


